

Welcome to Pytest Object Getter documentation!

PYTEST OBJECT GETTER

A Pytest Plugin providing the get_object fixture.

[image: GitHub Workflow Status (branch)] [https://github.com/boromir674/pytest-object-getter/actions/workflows/test.yaml?query=branch%3Amaster] [image: Read the Docs (version)] [https://pytest-object-getter.readthedocs.io/en/master/] [image: Codecov] [https://app.codecov.io/gh/boromir674/pytest-object-getter] [image: Code Climate Maintainability] [https://codeclimate.com/github/boromir674/pytest-object-getter/maintainability] [image: Better Code Hub] [https://bettercodehub.com/] [image: Technical Debt] [https://codeclimate.com/github/boromir674/pytest-object-getter/maintainability]

[image: Production Version] [https://pypi.org/project/pytest_object_getter/] [image: PyPI - Wheel] [https://pypi.org/project/pytest_object_getter] [image: Supported Python versions] [https://pypi.org/project/pytest_object_getter] [image: GitHub] [https://github.com/boromir674/pytest-object-getter/blob/master/LICENSE] [image: GitHub commits since tagged version (branch)] [https://github.com/boromir674/pytest-object-getter/compare/v1.0.1..master] [image: GitHub commits since latest release (by SemVer)]

Code: https://github.com/boromir674/pytest-object-getter

Docs: https://pytest-object-getter.readthedocs.io/en/master/

PyPI: https://pypi.org/project/pytest-object-getter/

CI: https://github.com/boromir674/pytest-object-getter/actions/

Highlights

	pytest_object_getter python package, hosted on pypi.org [https://pypi.org/]

	Installable with pip

	get_object fixture available to your tests

	Dynamically import an object from a module

	Optionally mock any object that is present in the module’s namespace

	Construct the mock object at runtime

	Alter the bahaviour of an object at runtime

	Tested against multiple platforms and python versions

	platforms: Ubuntu, MacOS

	python: 3.6, 3.7, 3.8, 3.9, 3.10

For more, see the CI Pipeline [https://github.com/boromir674/pytest-object-getter/actions] and the Test workflow, defined in test.yaml [https://github.com/boromir674/pytest-object-getter/blob/master/.github/workflows/test.yaml].

You can read more on pytest and fixtures in pytest latest documentation [https://docs.pytest.org/en/latest/].

Quickstart

Prerequisites

You need to have Python installed.

Installing

Using pip is the approved way for installing pytest_object_getter.

python3 -m pip install pytest_object_getter

After installation the get_object pytest fixture should be available in your tests.

A Use Case

Let’s see how to write a test and use the ‘get_object’ fixture to mock
the requests.get method to avoid actual network communication:

python3 -m pip install ask-pypi

import pytest

@pytest.fixture
def mock_response():
 def init(self, package_name: str):
 self.status_code = 200 if package_name == 'existing-package' else 404
 return type('MockResponse', (), {
 '__init__': init
 })

@pytest.fixture
def create_mock_requests(mock_response):
 def _create_mock_requests():
 def mock_get(*args, **kwargs):
 package_name = args[0].split('/')[-1]
 return mock_response(package_name)
 return type('MockRequests', (), {
 'get': mock_get,
 })
 return _create_mock_requests

def test_fixture(get_object, create_mock_requests):

 from ask_pypi import is_pypi_project

 assert is_pypi_project('numpy') == True
 assert is_pypi_project('pandas') == True
 assert is_pypi_project('existing-package') == False

 get_object('is_project', 'ask_pypi.pypi_project',
 overrides={'requests': lambda: create_mock_requests()})

 assert is_pypi_project('existing-package') == True

 assert is_pypi_project('numpy') == False
 assert is_pypi_project('pandas') == False
 assert is_pypi_project('so-magic') == False

License

Free software:

	GNU Affero General Public License v3.0 [https://github.com/boromir674/pytest-object-getter/blob/master/LICENSE]

[image: GitHub] [https://github.com/boromir674/pytest-object-getter/blob/master/LICENSE]

Development

Here are some useful notes related to doing development on this project.

	Test Suite, using pytest [https://docs.pytest.org/en/7.1.x/], located in tests dir

	Parallel Execution of Unit Tests, on multiple cpu’s

	Documentation Pages, hosted on readthedocs server, located in docs dir

	Automation, using tox [https://tox.wiki/en/latest/], driven by single tox.ini file

	Code Coverage measuring

	Build Command, using the build [https://github.com/pypa/build] python package

	Pypi Deploy Command, supporting upload to both pypi.org [https://pypi.org/] and test.pypi.org [https://test.pypi.org/] servers

	Type Check Command, using mypy [https://mypy.readthedocs.io/en/stable/]

	Lint Check and Apply commands, using isort [https://pycqa.github.io/isort/] and black [https://black.readthedocs.io/en/stable/]

	CI Pipeline, running on Github Actions [https://github.com/boromir674/pytest-object-getter/actions], defined in .github/

	Job Matrix, spanning different platform’s and python version’s

	Platforms: ubuntu-latest, macos-latest

	Python Interpreters: 3.6, 3.7, 3.8, 3.9, 3.10

	Parallel Job execution, generated from the matrix, that runs the Test Suite

Contents:

	Introduction

	Why this Package?

	Usage
	Installation

	Simple Use Case

	pytest_object_getter
	pytest_object_getter package

Indices and tables

	Index

	Module Index

	Search Page

Introduction

This is Pytest Object Getter, a Python Package desinged to …

Goal of this project is to facilitate easier mocking when writing test cases.

It provides with infrastructure (as pytest fixtures) to simplify writing a test case
that requires one or more (python) objects to be mocked

This documentation aims to help people understand what are the package’s features and to demonstrate

how to leverage them for their use cases.

Why this Package?

So, why would one opt for this Package?

It is easy to install (using pip) and intuitive to use.

Pytest Object Getter features the ‘get_object’ pytest fixture
that arguably simplifies the process of mocking an object present in a namespace.

Well-tested against multiple Python Interpreter versions (3.6 - 3.10),
tested on both Linux (Ubuntu) and Darwin (Macos) platforms.

Tests trigger automatically on CI.
The package’s releases follow Semantic Versioning.

Usage

Installation

pytest_object_getter is available on PyPI hence you can use pip to install it.

It is recommended to perform the installation in an isolated python virtual environment (env).
You can create and activate an env using any tool of your preference (ie virtualenv, venv, pyenv).

Assuming you have ‘activated’ a python virtual environment:

python -m pip install pytest-object-getter

Simple Use Case

Common Use Case for the pytest_object_getter is to use the ‘get_obejct’ fixture

to mock an object in your python test case (using pytest).

Let’s see a test that mocks the requests.get method to avoid
actual network communication:

Install Python dependencies:

python3 -m pip install ask-pypi

Test case:

import pytest

@pytest.fixture
def mock_response():
 def init(self, package_name: str):
 self.status_code = 200 if package_name == 'existing-package' else 404
 return type('MockResponse', (), {
 '__init__': init
 })

@pytest.fixture
def create_mock_requests(mock_response):
 def _create_mock_requests():
 def mock_get(*args, **kwargs):
 package_name = args[0].split('/')[-1]
 return mock_response(package_name)
 return type('MockRequests', (), {
 'get': mock_get,
 })
 return _create_mock_requests

def test_fixture(get_object, create_mock_requests):

 from ask_pypi import is_pypi_project

 assert is_pypi_project('numpy') == True
 assert is_pypi_project('pandas') == True
 assert is_pypi_project('existing-package') == False

 get_object('is_project', 'ask_pypi.pypi_project',
 overrides={'requests': lambda: create_mock_requests()})

 assert is_pypi_project('existing-package') == True

 assert is_pypi_project('numpy') == False
 assert is_pypi_project('pandas') == False
 assert is_pypi_project('so-magic') == False

pytest_object_getter

	pytest_object_getter package
	Module contents

pytest_object_getter package

Module contents

	
pytest_object_getter.attribute_getter()

	

	
pytest_object_getter.generic_object_getter_class(attribute_getter, monkeypatch)

	Class instances can extract a requested object from within a module and optionally patch any object in the module’s namespace at runtime.

	
pytest_object_getter.get_object(object_getter_class)

	Import an object from a module and optionally mock any object in its namespace.

A callable that can import an object, given a reference (str), from a module
, given its “path” (string represented as ‘dotted’ modules: same way python
code imports modules), and provide the capability to monkeypatch/mock any
object found in the module’s namespace at runtime.

The client code must supply the first 2 arguments at runtime, correspoding
to the object’s symbol name (str) and module “path” (str).

The client code can optionally use the ‘overrides’ kwarg to supply a python
dictionary to specify what runtime objects to mock and how.

Each dictionary entry should model your intention to monkeypatch one of the
module namespace’ objects with a custom ‘mock’ value.

Each dictionary key should be a string corresponding to an object’s
reference name (present in the module’s namespace) and each value should be
a callable that can construct the ‘mock’ value.
The callable should take no arguments and acts as a “factory”, that when
called should provide the ‘mock’ value.

Example

def mocked_request_get()
business_method = get_object(

“business_method”,
“business_package.methods”,
overrides={“production”: lambda: ‘mocked’}

)

	Parameters

	
	symbol (str) – the object’s reference name

	module (str) – the module ‘path’ represented as module names “joined” by
“.” (dots)

	overrides (dict, optional) – declare what to monkeypatch and with what “mocks”. Defaults to None.

	Returns

	the object imported from the module with its namespace potentially mocked

	Return type

	Any

	
pytest_object_getter.object_getter_class(generic_object_getter_class)

	Do a dynamic import of a module and get an object from its namespace.

This fixture returns a Python Class that can do a dynamic import of a module
and get an object from its namespace.

Instances of this class are callable’s (they implement the __call__ protocol
) and uppon calling the return a reference to the object “fetched” from the
namespace.

Callable instances arguments:
* 1st: object with the ‘symbol_namel’: str and ‘object_module_string’: str

attributes expected “on it”

	Returns

	Class that can do a dynamic import and get an object

	Return type

	ObjectGetter

 Python Module Index

 p

 		 	

 		
 p	

 	
 	
 pytest_object_getter	

Index

 A
 | G
 | M
 | O
 | P

A

 	
 	attribute_getter() (in module pytest_object_getter)

G

 	
 	generic_object_getter_class() (in module pytest_object_getter)

 	
 	get_object() (in module pytest_object_getter)

M

 	
 	
 module

 	pytest_object_getter

O

 	
 	object_getter_class() (in module pytest_object_getter)

P

 	
 	
 pytest_object_getter

 	module

 _static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to Pytest Object Getter documentation!

 		
 Introduction

 		
 Why this Package?

 		
 Usage

 		
 Installation

 		
 Simple Use Case

 		
 pytest_object_getter

 		
 pytest_object_getter package

 		
 Module contents

